20世纪最伟大的十大算法助你走上高薪路

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。不同的算法可能用不同的时间、空间或效率来完成同样的任务。算法对计算机行业的发展意义重大,本文为大家列举了20世纪最伟大的十大算法,希望你能以他们为利器,获取高薪:

先来认识一下发明十大算法的其中几位算法大师

一、蒙特卡洛方法

[:JohnvonNeumann,StanUlam,andNickMetropolis,allattheLosAlamosScientificLaboratory,cookuptheMetropolisalgorithm,alsoknownastheMonteCarlomethod.]

年,美国拉斯阿莫斯国家实验室的三位科学家JohnvonNeumann,StanUlam和NickMetropolis共同发明,被称为蒙特卡洛方法。

它的具体定义是:

在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?

蒙特卡洛(MonteCarlo)方法告诉我们,均匀的向该正方形内撒N(N是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。

在这里我们要假定豆子都在一个平面上,相互之间没有重叠。(撒黄豆只是一个比喻。)

蒙特卡洛方法可用于近似计算圆周率:

让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,内接圆面积和正方形面积之比为PI:4,PI为圆周率。

当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。

二、单纯形法

[:GeorgeDantzig,attheRANDCorporation,createsthesimplexmethodforlinearprogramming.]

年,兰德公司的,GrorgeDantzig,发明了单纯形方法。

单纯形法,此后成为了线性规划学科的重要基石。

所谓线性规划,简单的说,就是给定一组线性(所有变量都是一次幂)约束条件(例如a1*x1+b1*x2+c1*x30),求一个给定的目标函数的极值。

这么说似乎也太太太抽象了,但在现实中能派上用场的例子可不罕见——比如对于一个公司而言,其能够投入生产的人力物力有限(“线性约束条件”),而公司的目标是利润最大化(“目标函数取最大值”),看,线性规划并不抽象吧!

线性规划作为运筹学(operationresearch)的一部分,成为管理科学领域的一种重要工具。而Dantzig提出的单纯形法便是求解类似线性规划问题的一个极其有效的方法。

三、Krylov子空间迭代法

[:MagnusHestenes,EduardStiefel,andCorneliusLanczos,allfromtheInstituteforNumericalAnalysisattheNationalBureauofStandards,initiatethedevelopmentofKrylovsubspaceiterationmethods.]

年:美国国家标准局数值分析研究所的,马格努斯Hestenes,爱德华施蒂费尔和科尼利厄斯的Lanczos,发明了Krylov子空间迭代法。

Krylov子空间迭代法是用来求解形如Ax=b的方程,A是一个n*n的矩阵,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi的迭代形式来求解。

这里的K(来源于作者俄国人NikolaiKrylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。

四、矩阵计算的分解方法

[:AlstonHouseholderofOakRidgeNationalLaboratoryformalizesthede







































治疗白癜风秘方
河北治疗白癜风的医院



转载请注明:http://www.jiaju1314.com/bcxx/11281.html

  • 上一篇文章:
  •   
  • 下一篇文章: 没有了